Representing Probabilistic Rules with Networks of Gbfs

نویسنده

  • Jude W. Shavlik
چکیده

There is great interest in understanding the intrinsic knowledge neural networks have acquired during training. Most work in this direction is focussed on the multi-layer perceptron architecture. The topic of this paper is networks of Gaussian basis functions which are used extensively as learning systems in neural computation. We show that networks of Gaussian basis functions can be generated from simple probabilistic rules. Also, if appropriate learning rules are used, probabilistic rules can be extracted from trained networks. We present methods for the reduction of network complexity with the goal of obtaining concise and meaningful rules. We show how prior knowledge can be reened or supplemented using data by employing either a Bayesian approach, by a weighted combination of knowledge bases, or by generating artiicial training data representing the prior knowledge. We validate our approach using a standard statistical data set.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Rule-based joint fuzzy and probabilistic networks

One of the important challenges in Graphical models is the problem of dealing with the uncertainties in the problem. Among graphical networks, fuzzy cognitive map is only capable of modeling fuzzy uncertainty and the Bayesian network is only capable of modeling probabilistic uncertainty. In many real issues, we are faced with both fuzzy and probabilistic uncertainties. In these cases, the propo...

متن کامل

Load-Frequency Control: a GA based Bayesian Networks Multi-agent System

Bayesian Networks (BN) provides a robust probabilistic method of reasoning under uncertainty. They have been successfully applied in a variety of real-world tasks but they have received little attention in the area of load-frequency control (LFC). In practice, LFC systems use proportional-integral controllers. However since these controllers are designed using a linear model, the nonlinearities...

متن کامل

Confidence Values and Compact Rule Extraction From Probabilistic Neural Networks

One of the key challenges of extracting rules from neural networks is accommodation of the inherent flexibility of knowledge representation in neural networks to more rigid rule based systems. Neural networks are often seen as having ‘soft constraints’ as opposed to the ‘hard constraints’ of rule based systems. This distinction has been identified as one of the key differences between the conne...

متن کامل

LPKP: location-based probabilistic key pre-distribution scheme for large-scale wireless sensor networks using graph coloring

Communication security of wireless sensor networks is achieved using cryptographic keys assigned to the nodes. Due to resource constraints in such networks, random key pre-distribution schemes are of high interest. Although in most of these schemes no location information is considered, there are scenarios that location information can be obtained by nodes after their deployment. In this paper,...

متن کامل

Use of Artificial Neural Network for the Prediction of Ammonia Emission Concentration of Granulated Blast Furnace Slag Mortar

In this study, an artificial neural networks study was carried out to predict the quantity of ammonia gas (NH3) of Granulated Blast Furnace Slag (GBFS) cement mortar. A data set of a laboratory work, in which a total of 4 mortars were produced, was utilized in the Artificial Neural Networks (ANNs) study. The mortar mixture parameters were four different GBFS ratios (0%, 20%, 40% and 60%). Measu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1995